Published on Web 11/12/2009

$\mathrm{Sc}_{3} \mathrm{~N} @\left(\mathrm{C}_{80}-\mathrm{I}_{\mathrm{h}}(7)\right)\left(\mathrm{CF}_{3}\right)_{14}$ and $\mathrm{Sc}_{3} \mathrm{~N} @\left(\mathrm{C}_{80}-\mathrm{I}_{\mathrm{h}}(7)\right)\left(\mathrm{CF}_{3}\right)_{16}$. Endohedral Metallofullerene Derivatives with Exohedral Addends on Four and Eight Triple-Hexagon Junctions. Does the $\mathrm{Sc}_{3} \mathrm{~N}$ Cluster Control the Addition Pattern or Vice Versa?

Natalia B. Shustova, ${ }^{\ddagger}$ Yu-Sheng Chen, ${ }^{*, \S}$ Mary A. Mackey, ${ }^{\text {T }}$ Curtis E. Coumbe, ${ }^{\Pi}$ J. Paige Phillips,*, ${ }^{* 1}$ Steven Stevenson,*, ${ }^{* 17}$ Alexey A. Popov, ${ }^{*, \ddagger}$ Olga V. Boltalina,*, ${ }^{\text {, }}$ and Steven H. Strauss ${ }^{*, t}$
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, ChemMatCARS Beamline, University of Chicago Advanced Photon Source, Argonne, Illinois 60439, Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, and Department of Electrochemistry and Conducting Polymers, Leibniz, Institute for Solid State and Materials Research, Dresden D01069, Germany
Received August 14, 2009
yschen@cars.uchicago.edu; janice.phillips@usm.edu; steven.stevenson@usm.edu; a.popov@ifw-dresden.de; olga.boltalina@colostate.edu; steven.strauss@colostate.edu

Abstract

The compounds $\mathrm{Sc}_{3} \mathrm{~N} @\left(\mathrm{C}_{80}-\mathrm{I}_{\mathrm{n}}(7)\right)\left(\mathrm{CF}_{3}\right)_{14}$ (1) and $\mathrm{Sc}_{3} \mathrm{~N} @\left(\mathrm{C}_{80}-\mathrm{I}_{\mathrm{n}}(7)\right)\left(\mathrm{CF}_{3}\right)_{16}$ (2) were prepared by heating $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80} \mathrm{I}_{\mathrm{h}}(7)$ and $\mathrm{Ag}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)$ to $350{ }^{\circ} \mathrm{C}$ in a sealed tube. The structures of 1 and 2 were determined by single-crystal X-ray diffraction. They are the first X-ray structures of any endohedral metallofullerene with more than four cage $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ atoms. The structures exhibit several unprecedented features for metallic nitride fullerenes, including multiple cage sp^{3} triple-hexagon junctions (four on 1 and eight on 2), no cage disorder and little (2) or no (1) endohedral atom disorder, high-precision ($\mathrm{C}-\mathrm{C}$ esd's are $0.005 \AA \AA$ for 1 and $0.002 \AA \AA$ for 2), an isolated aromatic $\mathrm{C}\left(\mathrm{sp}^{2}\right)_{6}$ hexagon on $\mathbf{2}$, and two negatively charged isolated aromatic $\mathrm{C}\left(\mathrm{sp}^{2}\right)_{5}^{-}$pentagons on $\mathbf{2}$ that are bonded to one of the Sc atoms. DFT calculations are in excellent agreement with the two $\mathrm{Sc}_{3} N$ conformations observed for $2\left(\Delta E(\right.$ calc $)=0.36 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \Delta E(\exp)$ $\left.=0.26(2) \mathrm{kJ} \mathrm{mol}^{-1}\right)$.

Introduction

Metallic nitride fullerenes (MNFs), ${ }^{1,2}$ which are a subset of endohedral metallofullerenes (EMFs), have been the focus of intense research for the past decade. ${ }^{3}$ This is in part because (i) they possess unusual structures ${ }^{1,2,4,5}$ and physicochemical properties, ${ }^{6}$ (ii) exohedral derivatives of them may find use in medical applications such as MRI and as X-ray contrast agents, ${ }^{7,8}$ and (iii) recent breakthroughs in their synthesis and purification have made them available in larger quantities. ${ }^{9-12}$

[^0]In 2007, we reported the synthesis and spectroscopic/electrochemical characterization of $\mathrm{Sc}_{3} \mathrm{~N} @\left(\mathrm{C}_{80}-I_{\mathrm{h}}(7)\right)\left(\mathrm{CF}_{3}\right)_{2}{ }^{13}$ In this paper we report the synthesis and X-ray structures of two new derivatives with 14 and $16 \mathrm{CF}_{3}$ substituents, ${ }^{14} \mathrm{Sc}_{3} \mathrm{~N} @\left(\mathrm{C}_{80}-\right.$ $\left.I_{\mathrm{h}}(7)\right)\left(\mathrm{CF}_{3}\right)_{14}$ (1) and $\mathrm{Sc}_{3} \mathrm{~N} @\left(\mathrm{C}_{80}-\mathrm{I}_{\mathrm{h}}(7)\right)\left(\mathrm{CF}_{3}\right)_{16}$ (2) (hereinafter C_{80} will refer exclusively to the cage isomer $\left.\mathrm{C}_{80}-I_{\mathrm{h}}(7)^{15}\right)$. These compounds and their molecular structures are significant for the following six reasons: $\mathbf{1}$ exhibits neither cage nor endohedralatom disorder, a situation rarely observed in EMF X-ray structures ${ }^{4,5}$ including the MNF $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}{ }^{1,2}$ and its exohedral derivatives, ${ }^{16-19}$ and 2 only exhibits a minor 2-fold disorder of one Sc atom; they are the first X-ray structures of any EMF
(8) Miyamoto, A.; Okimoto, H.; Shinohara, H.; Shibamoto, Y. Eur. Radiol. 2006, 16, 1050-1053.
(9) Stevenson, S.; Harich, K.; Yu, H.; Stephen, R. R.; Heaps, D.; Coumbe, C.; Phillips, J. P. J. Am. Chem. Soc. 2006, 128, 8829-8835.
(10) Stevenson, S.; Mackey, M. A.; Coumbe, C.; Phillips, J. P.; Elliott, B.; Echegoyen, L. J. Am. Chem. Soc. 2007, 129, 6072-6073.
(11) Elliott, B.; Yu, L.; Echegoyen, L. J. Am. Chem. Soc. 2005, 127, 1088510888.
(12) Ge, Z. X.; Duchamp, J. C.; Cai, T.; Gibson, H. W.; Dorn, H. C. J. Am. Chem. Soc. 2005, 127, 16292-16298.
(13) Shustova, N. B.; Popov, A. A.; Mackey, M. A.; Coumbe, C. E.; Phillips, J. P.; Stevenson, S.; Strauss, S. H.; Boltalina, O. V. J. Am. Chem. Soc. 2007, 129, 11676-11677.
(14) Powell, W. H.; Cozzi, F.; Moss, G. P.; Thilgen, C.; Hwu, R. J. R.; Yerin, A. Pure Appl. Chem. 2002, 74, 629-695.
(15) Fowler, P. W.; Manolopoulous, D. E. An Atlas of Fullerenes; Dover: Mineola, NY, 2006.

Table 1. Crystal Data and Structure Refinement for $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{14}$ (1) and $\mathrm{Sc}_{3}{\mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{16} \text { (2) }}^{\text {(2 }}$

compound	$\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{14} \cdot 0.5 \mathrm{C}_{8} \mathrm{H}_{10}$	$\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{16}$
molecular formula, formula weight	$\mathrm{C}_{94} \mathrm{~F}_{42} \mathrm{NSc}_{3} \cdot 0.5\left(\mathrm{C}_{8} \mathrm{H}_{10}\right), 2128.01 \mathrm{~g} \mathrm{~mol}^{-1}$	$\mathrm{C}_{96} \mathrm{~F}_{48} \mathrm{NSc}_{3}, 2213.85 \mathrm{~g} \mathrm{~mol}^{-1}$
crystal system, space group, Z	monoclinic, $P 2_{1} / n, 4$	triclinic, $P 1,2$
color of crystal	brown	
unit cell dimensions	$a=13.618(1) \AA$	$a=13.8756(6) \AA$
	$b=25.451(2) \AA$	$b=15.3985(7) \AA$
	$c=19.3451(16) \AA$	$c=16.7884(7) \AA$
	$\alpha=90^{\circ}$	$\alpha=73.911(3)^{\circ}$
	$\beta=98.491(2)^{\circ}$	$\beta=88.258(3)^{\circ}$
	$\gamma=90^{\circ}$	$\gamma=74.257(3)^{\circ}$
data collection temperature	100(2) K	100(2) K
final R indices, $R_{1}[I>2 \sigma(I)], w R_{2}$ [all data]	0.0661, 0.1894	$0.0437,0.1253$
goodness-of-fit on F^{2}	1.071	1.010

```
Sc
C}\mp@subsup{}{94}{}\mp@subsup{\textrm{F}}{42}{}\mp@subsup{\textrm{NSc}}{3}{}\cdot0.5(\mp@subsup{\textrm{C}}{8}{}\mp@subsup{\textrm{H}}{10}{}),2128.01\mp@subsup{\textrm{g mol}}{}{-1
monoclinic, P2 / /n, 4
brown
a=13.618(1) \AA
b=25.451(2) \AA
c=19.3451(16) \AA
\alpha=90
\beta=98.491(2)}\mp@subsup{}{}{\circ
\gamma=90
0.0661, 0.1894
1 . 0 7 1
```

$\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{16}$
$\mathrm{C}_{96} \mathrm{~F}_{48} \mathrm{NSc}_{3}, 2213.85 \mathrm{~g} \mathrm{~mol}^{-1}$
triclinic, $P 1,2$
red
$a=13.8756(6) \AA$
$b=15.3985(7) \AA$
$c=16.7884(7) \AA$
$\alpha=73.911(3)^{\circ}$
$\beta=88.258(3)^{\circ}$
$\gamma=74.257(3)^{\circ}$
100(2) K
1.010
with more than four cage $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ atoms; they are rare examples of fullerene $(\mathrm{X})_{n}$ derivatives with one or more X groups on triplehexagon junctions (i.e., with $\left.\mathrm{sp}^{3} \mathrm{THJs}\right)^{18,20-22}\left(\mathbf{1}\right.$ has four sp^{3} THJs and $\mathbf{2}$ has eight of them); the addition pattern of $\mathbf{2}$ includes two isolated cyclopentadienyl($1-$) rings; the structures are precise enough that a meaningful analysis of interatomic distances and angles can be performed and correlated with computational results at the DFT level of theory (the average estimated standard deviations (esd's) for cage $\mathrm{C}-\mathrm{C}$ bond distances are $0.005 \AA$ for $\mathbf{1}$ and $0.002 \AA$ for $\mathbf{2}$); the $\mathrm{Sc}_{3} \mathrm{~N}$ clusters in $\mathbf{1}$ and $\mathbf{2}$ are more distorted from 3 -fold symmetry than in any other MNF X-ray structure published to date, and the distortions are clearly caused by the pattern of cage $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ atoms in these compounds.

Results and Discussion

Compounds 1 and 2 were prepared and purified using methods we previously used for other trifluoromethylfullerenes such as $\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{2,4,6},{ }^{23,24} \mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{2,4,6,8},{ }^{25}$ and $\mathrm{Y} @\left(\left(\mathrm{C}_{82^{-}}\right.\right.$ $\left.\left.C_{2 v}(9)\right)\left(\mathrm{CF}_{3}\right) 5\right) .{ }^{26}$ Atmospheric-pressure photoionization (APPI) mass spectra are shown in Figure S-1 in Supporting Information. In addition to $\mathbf{1}$ and $\mathbf{2}$, other $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{n}$ compounds have been isolated using this synthetic method, and these will be
(16) Shu, C.; Slebodnick, C.; Xu, L.; Champion, H.; Fuhrer, T.; Cai, T.; Reid, J. E.; Fu, W.; Harich, K.; Dorn, H. C.; Gibson, H. W. J. Am. Chem. Soc. 2008, 130, 17755-17760.
(17) Lee, H. M.; Olmstead, M. M.; Iezzi, E.; Duchamp, J. C.; Dorn, H. C.; Balch, A. L. J. Am. Chem. Soc. 2002, 124, 3494-3495.
(18) Cai, T.; Slebonick, C.; Xu, L.; Harich, K.; Glass, T. E.; Chancellor, C.; Fettinger, J. C.; Olmstead, M. M.; Balch, A. L.; Gibson, H. W.; Dorn, H. C. J. Am. Chem. Soc. 2006, 128, 6486-6492.
(19) Wakahara, T.; Iiduka, H.; Ikenaga, O.; Nakahodo, T.; Sakuraba, A.; Yoza, K.; Horn, E.; Mizorogi, N.; Nagase, S. J. Am. Chem. Soc. 2006, 128, 9919-9925.
(20) Hitchcock, P. B.; Avent, A. G.; Martsinovich, N.; Troshin, P. A.; Taylor, R. Chem. Commun. 2005, 75-77.
(21) Cai, T.; Xu, L.; Gibson, H. W.; Dorn, H. C.; Chancellor, C. J.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 2007, 129, 1079510800, and references therein.
(22) Hitchcock, P. B.; Avent, A. G.; Martisinovich, N.; Troshin, P. A.; Taylor, R. Org. Lett. 2005, 7, 1975-1978.
(23) Goryunkov, A. A.; Kuvychko, I. V.; Ioffe, I. N.; Dick, D. L.; Sidorov, L. N.; Strauss, S. H.; Boltalina, O. V. J. Fluorine Chem. 2003, 124, 61-64.
(24) Goryunkov, A. A.; Ioffe, I. N.; Kuvychko, I. V.; Yankova, T. S.; Markov, V. Y.; Streletskii, A. V.; Dick, D. L.; Sidorov, L. N.; Boltalina, O. V.; Strauss, S. H. Fullerenes, Nanotubes, Carbon Nanostruct. 2004, 12, 181-185.
(25) Dorozhkin, E. I.; Ignat'eva, D. V.; Tamm, N. B.; Goryunkov, A. A.; Khavrel, P. A.; Ioffe, I. N.; Popov, A. A.; Kuvychko, I. V.; Streletskiy, A. V.; Markov, V. Y.; Spandl, J.; Strauss, S. H.; Boltalina, O. V. Chem.-Eur. J. 2006, 12, 3876-3889.
(26) Kareev, I. E.; Lebedkin, S. F.; Bubnov, V. P.; Yagubskii, E. B.; Ioffe, I. N.; Khavrel, P. A.; Kuvychko, I. V.; Strauss, S. H.; Boltalina, O. V. Angew. Chem., Int. Ed. 2005, 44, 1846-1849.
reported in a separate paper once they have been more completely characterized. The HPLC purification scheme for $\mathbf{1}$ and 2 is shown in Figure S-2 in Supporting Information. The amounts of $\mathbf{1}$ and $\mathbf{2}$ that have been collected at this time are insufficient for detailed spectroscopic or electrochemical characterization. These two compounds are much less abundant than other isomers of $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{14}$ and $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{16}$, but the more abundant isomers have not yet been purified as well as 1 and 2. However, the electrochemical behavior of $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{2}$ was studied previously, and it was found that it was 0.1 V easier to reduce than the parent $\mathrm{MNF} \mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}$. Therefore, studying the electronic properties of the more abundant isomers will be an important part of our ongoing study of $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{n}$ derivatives.

Single crystals of $\mathbf{1}$ and 2 were studied by X-ray crystallography. Selected experimental parameters are listed in Table 1. The C_{1} molecular structure of $\mathbf{1}$ and the idealized C_{2} structure of 2 are shown in Figures 1 and 2, respectively (see Supporting Information for complete thermal ellipsoid plots and atom numberings). Numbered Schlegel diagrams for 1 and 2 are shown in Figure 3. The locants shown for $\mathbf{1}$ in Figures 1 and 3 are IUPAC lowest locants; ${ }^{14}$ the same numbering scheme was adopted for $\mathbf{2}$ to facilitate comparisons with the structure of $\mathbf{1}$. Selected interatomic distances and angles are listed in Table 2 along with relevant results for DFT-optimized $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}$, the numbering for which was also chosen to facilitate comparisons. To validate the DFT code that we used to optimize the structures of EMFs, plots showing the excellent agreement of X-ray versus DFT-predicted cage $\mathrm{C}-\mathrm{C}$ distances for 2 and the X-ray versus DFT-predicted $\mathrm{Sc}-\mathrm{C}$ and $\mathrm{Sc}-\mathrm{N}$ distances for $\mathbf{1}$ and $\mathbf{2}$ are shown in Figure 4.

The CF_{3} groups in 1 are attached to 14 cage $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ atoms that form a continuous ribbon of edge-sharing para- and meta$\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons and $1,3-\mathrm{C}_{5}\left(\mathrm{CF}_{3}\right)_{2}$ pentagons (each shared edge is a cage $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ bond). Four CF_{3} groups, on C 1 , C3, C17, and C65, exhibit 2-fold rotational disorder (not shown in Figure 1). The $\mathrm{C} 1, \mathrm{C} 3$, and $\mathrm{C} 17 \mathrm{CF}_{3}$ groups are ca. 50% staggered and ca. 50% eclipsed with respect to the three cage $\mathrm{C}-\mathrm{C}$ bonds that radiate from the cage C atom to which they are attached, and the $\mathrm{C} 65 \mathrm{CF}_{3}$ group is $88.6(4) \%$ staggered and $11.4(4) \%$ eclipsed. Ignoring these disordered CF_{3} groups, the range of $\mathrm{F} \cdots \mathrm{F}$ contacts shorter than $3 \AA$ between CF_{3} groups that share the same hexagon or pentagon is $2.591(5)-2.791(5)$ \AA. This range is normal for CF_{3} derivatives of hollow higher fullerenes. ${ }^{27-29}$
(27) Shustova, N. B.; Popov, A. A.; Newell, B. S.; Miller, S. M.; Anderson, O. P.; Seppelt, K.; Bolskar, R. D.; Boltalina, O. V.; Strauss, S. H. Angew. Chem., Int. Ed. 2007, 46, 4111-4114.

Figure 1. IUPAC-numbered thermal ellipsoid plot (TEP) of $\mathbf{1}$ (50% probability ellipsoids for $\mathrm{F}, \mathrm{N}, \mathrm{Sc}$, and selected C atoms). The molecule is oriented to highlight the nearly planar $\mathrm{Sc}_{3} \mathrm{~N}$ cluster, the light-brown cage C atoms to which the blue Sc atoms are attached, and the four CF_{3} groups on the triple-hexagon junctions $\mathrm{C} 41, \mathrm{C} 45, \mathrm{C} 62$, and C 65 . The Sc_{3} leastsquares plane (LSP) is tilted 77.0° from the C42-C63-C64-C44 LSP (the plane of the page for the TEP) and 88.6° from the $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 8-\mathrm{C} 9$ LSP (the plane of the page for the Schlegel diagram). The unnumbered yellow ellipsoids are the 42 F atoms. Two of the three cage C atoms attached to $\mathrm{Sc} 3, \mathrm{C} 74$, and C 76 , are hidden from view, as is C 70 . The four CF_{3} groups on C1, C3, C17, and C65 each exhibit a 2-fold rotational disorder, but only one of the two orientations for these CF_{3} groups are shown in the TEP.

The endohedral $\mathrm{Sc}_{3} \mathrm{~N}$ cluster in 1, which formally has a 6+ charge, ${ }^{30-32}$ is "locked" into position (i.e., it is not disordered), a situation that is rarely observed in MNFs (but is not unprecedented ${ }^{4,21}$). Addition of the $14 \mathrm{CF}_{3}$ groups undoubtedly results in electron-rich and electron-poor regions of the remaining fullerene π system when compared with $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}$. This effect and the lack of any element of symmetry apparently combine to make the observed orientation of the $\mathrm{Sc}_{3} \mathrm{~N}$ cluster in $\mathbf{1}$ more stable than alternative orientations, in sharp contrast to the situation in underivatized $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}$, in which the $\mathrm{Sc}_{3} \mathrm{~N}$ cluster exhibits rapid rotational averaging over many symmetryequivalent orientations. ${ }^{30,31,33-35}$ Similar conclusions about observed or proposed metal-atom localization in derivatized EMFs have been reached previously by us and by others, ${ }^{13,19,36,37}$ but as far as X-ray structures are concerned, all previous examples have only two or four cage $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ atoms. ${ }^{21}$ With the

[^1]

Figure 2. IUPAC-numbered thermal ellipsoid plot of $\mathbf{2}$ (50\% probability ellipsoids for F, N, Sc, and selected C atoms). The molecule, which has idealized but not crystallographic C_{2} symmetry, is oriented to highlight the unusually large $\mathrm{Sc} 1-\mathrm{N}-\mathrm{Sc} 2$ angle of $150.52(7)^{\circ}$ (the molecular C_{2} axis bisects this bond). The isolated benzenoid hexagon is at the bottom and the two isolated $\mathrm{C}\left(\mathrm{sp}^{2}\right)_{5}^{-}$pentagons, which are joined by C 71 and C 74 , are at the top. The unnumbered yellow ellipsoids are the 48 F atoms. The IUPAC locants shown are not the lowest set of locants; they are the same as those used for $\mathbf{1}$ to facilitate comparisons with $\mathbf{1}$. The correct IUPAC lowest locants are given in Table 2.
structures of $\mathbf{1}$ and $\mathbf{2}$ unambiguously determined, it is now possible to study in detail (i) the effect that addition patterns have on the experimentally verified orientation of the $\mathrm{Sc}_{3} \mathrm{~N}$ cluster in highly derivatized $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}$ compounds in particular and (ii) the role that addition patterns might play in orienting $\mathrm{M}_{3} \mathrm{~N}$ clusters in MNFs with multiple cage $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ atoms in general.

Four of the CF_{3} groups in $\mathbf{1}$ are attached to C_{80} THJs C41, C45, C62, and C65. This is unprecedented. Before this work, no fullerene derivative of any kind had been found with more than two $\mathrm{sp}^{3} \mathrm{THJs}$, probably because (i) $\mathrm{sp}^{2} \mathrm{THJs}$ are the least pyramidal cage C atoms in empty underivatized higher fullerenes, ${ }^{38}$ and the release of angle strain at more pyramidal sites is part of the driving force for exohedral functionalization at those particular sites, ${ }^{39}$ and (ii) no EMF with more than four cage $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ atoms had been structurally characterized. However, the degree-of-pyramidalization in underivatized EMFs is more complicated than in empty underivatized higher fullerenes because some EMF sp ${ }^{2}$ THJs are more pyramidal than some of the cage $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ atoms that make up the EMF pentagons (see Supporting Information for more information about pyramidalization in fullerenes). There are X-ray structures of two cycloadducts of MNFs that have one sp^{3} THJ each, $\mathrm{Sc}_{3} \mathrm{~N} @\left(\mathrm{C}_{78^{-}}\right.$ $\left.D_{3 h}(5)\right)\left(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NCPh}_{3}\right)^{21}$ and $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NCPh}_{3}\right) .{ }^{18}$ The former compound appears to be the stable isomer of this composition; the latter compound isomerizes in solution to a more stable isomer with no sp^{3} THJs. ${ }^{18}$ In addition, the bis-

[^2]

Figure 3. IUPAC-numbered Schlegel diagrams for $\mathbf{1}\left(\mathrm{Sc}_{3} \mathrm{~N}^{\mathrm{N}} \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{14}\right.$, left) and $\mathbf{2}\left(\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{16}\right.$, right). The black circles indicate the cage $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ atoms bonded to the CF_{3} groups, para- and meta- $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons are highlighted in yellow, $1,3-\mathrm{C}_{5}\left(\mathrm{CF}_{3}\right)_{2}$ pentagons are highlighted in blue, and the Sc atoms are indicated by numbered red circles, which are placed on the $\mathrm{C}-\mathrm{C}$ bonds of two cage $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ atoms closest to the Sc atoms (the ca. half-occupancy atoms Sc 3 a and Sc 3 b in 2 are also close to C 73 and C 76 , respectively). In the DFT-optimized structure of $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}$, Sc 1 is closest to C 13 and $\mathrm{C} 14, \mathrm{Sc} 2$ is closest to C23 and C24, and Sc3 is closest to C76 and C80.

Table 2. Selected Distances (A) and Angles (deg) for the $\mathrm{Sc}_{3} \mathrm{~N}$ Moietya

parameter	1 (X-ray)	2 (X-ray)	$\mathrm{Sc}_{3} \mathrm{NQ}_{\text {C }}^{80}$ (DFT)
Sc1-N	2.043(3)	2.0057(13)	2.034
Sc2-N	2.051(3)	2.0027(13)	2.034
Sc3a-N	1.997(3)	2.013(2)	2.034
Sc3b-N		2.007(2)	
Sc1-N-Sc2	136.7(1)	150.52(7)	120.0
Sc1-N-Sc3	120.3(1)	102.2(2); 107.3(1) ${ }^{\text {b }}$	120.0
Sc2-N-Sc3	102.9(1)	107.1(1); 102.1(1) ${ }^{\text {b }}$	120.0
Sc1-C	2.278(3) (C13)	2.2844(16) (C13)	2.294 (C13)
Sc1-C	2.318(3) (C12)	$2.2806(15)(\mathrm{C} 31)$	2.263 (C14)
Sc2-C	2.235(4) (C43)	2.2837(15) (C43)	2.263 (C23)
Sc2-C	2.311(3) (C22)	2.2784(15) (C42)	2.294 (C24)
Sc3(a)-C	2.250(3) (C76)	2.337(3) (C76)	2.263 (C76)
Sc3(a)-C	2.292(3) (C80)	2.199 (5) (C80)	2.294 (C80)
Sc3(a)-C	2.332(3) (C74)	2.316 (3) (C72)	2.388 (C73)
Sc3b-C		2.317(2) (C76)	
Sc3b-C		2.215(3) (C73)	
Sc3b-C		2.346 (3) (C72)	
Sc3b-C		2.434(3) (C80)	

[^3]cycloadduct $\mathrm{Sc}_{3} \mathrm{~N} @\left(\mathrm{C}_{78}-D_{3 h}(5)\right)\left(\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)_{2}$ is believed to have two sp^{3} THJs. ${ }^{37}$

Our DFT calculations, summarized in Figure 5, show that the $1,3,7,17,28,39,41,45,47,51,54,62,65,70$ isomer $\mathbf{1}$, with four sp^{3} THJs, is more stable than several hypothetical isomers without sp^{3} THJs, viz., isomers $3,5,7$, and 8 . However, if the $\mathrm{Sc}_{3} \mathrm{~N}^{6+}$ cluster is removed from $\mathbf{1}$, the remaining hexaanion $1,3,7,17,28,39,41,45,47,51,54,62,65,70-\mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{14}{ }^{6-}$ is far less stable than $\mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{14}{ }^{6-}$ isomers 3 and 5. Therefore, the presence of the metal cluster appears to stabilize the formation of the four sp^{3} THJs in $\mathbf{1}$. We believe this is because the formation of sp^{3} THJs tends to localize negative charge in pentagons to which

Figure 4. Comparison of the 120 X-ray and DFT-optimized cage $\mathrm{C}-\mathrm{C}$ bonds in 2 and the $\mathrm{Sc}-\mathrm{C}$ and $\mathrm{Sc}-\mathrm{N}$ bonds in $\mathbf{1}$ and 2 (the error bars for the X-ray distances are $\pm 3 \sigma$); the x - and y-axes for the smaller graph are identical to one another). The dashed lines have slope $=1$ and pass through the origin. The four shortest X-ray cage $\mathrm{C}-\mathrm{C}$ bonds in 2 are C35-C36, 1.344(2) Å; C66-C67, 1.344(2) Å; C3-C15, 1.353(2) Å; and C24-C45, $1.354(2) \AA$. Several DFT versus X-ray $\mathrm{Sc} \cdots \mathrm{C}$ distances greater than 2.35 \AA are shown in the smaller graph but are not considered to be primary bonding interactions between the Sc atoms and the cage.
one or more metal atoms are bonded. For example, the four sp^{3} THJs in $\mathbf{1}$ are bonded to a common pentagon (see Figures 1 and 3), and this is the same pentagon that interacts strongly with Sc2 through C43 (see Table 2), the closest cage C atom to Sc 2 , and C42 and C44, the third and fourth closest cage C atoms to $\mathrm{Sc} 2(\mathrm{Sc} 2-\mathrm{C} 42=2.408(4) \AA$ and $\mathrm{Sc} 2-\mathrm{C} 44=2.408(3) \AA)$. The evidence that this pentagon has become more "electronrich" relative to the same pentagon in the precursor $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}$ is two-fold: (i) the C42-C63, C44-C63, and C63-C64 distances in 1 are ca. $1.41 \AA$, whereas they are ca. $1.44 \AA$ in (DFT-optimized) $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}$ (see Figure S-4 in Supporting Information); and (ii) Sc2 has moved from being closest to C23 and C 24 in $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}$ to being closest to C 22 and C 43 in 1, even though this has caused the $\mathrm{Sc} 1-\mathrm{N}-\mathrm{Sc} 2$ bond angle to undergo a significant distortion from 120° in $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}$ to

Figure 5. Schlegel diagrams for 1 (labeled 1, upper left) and seven hypothetical isomers of $\mathrm{Sc}_{3} \mathrm{~N}^{(} \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{14}$. The black circles indicate the cage $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ atoms bonded to the CF_{3} groups, para- and meta- $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons are highlighted in yellow, $1,3-\mathrm{C}_{5}\left(\mathrm{CF}_{3}\right)_{2}$ pentagons are highlighted in blue, and the Sc atoms are indicated by small red circles. DFT-predicted relative energies are shown for the compounds (regular font) and for the $\mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{14}{ }^{6-}$ hexaanions with the same addition pattern (italic font). Note that isomers 3, 5, 7, and 8 do not have sp ${ }^{3}$ THJs.
136.7(1) ${ }^{\circ}$ in 1. In addition, note that sp^{3} THJs C62 and C65 are also bonded to the pentagon that interacts with Sc 3 , and $\mathrm{C}-\mathrm{C}$ distances within that pentagon have also been shortened relative to $\mathrm{Sc}_{3} \mathrm{~N}^{\mathrm{N}} \mathrm{C}_{80}$ (see Figure $\mathrm{S}-4$ in Supporting Information).

The CF_{3} groups in 2, none of which is disordered, are attached to 16 cage $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ atoms, half of which are $\mathrm{sp}^{3} \mathrm{THJs}$ (C34, C53, C57, C62, C65, C68, C71, and C74). (The range of $\mathrm{F} \cdot \cdots \mathrm{F}$ distances for $\mathbf{2}$ is $2.527(2)-2.900(2) \AA$.) In this compound, the localization of negative charge in pentagons reaches the maximum extent. The eight sp^{3} THJs form a double loop of edge-sharing $p-\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons, and each loop of five $p-\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons surrounds an isolated pentagon composed of $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ atoms (i.e., the pentagons are isolated in that their π systems are not in conjugation with the rest of the fullerene π system or with each other; the $p-\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagon that includes C 71 and C 74 is common to both loops). Isolated $\mathrm{C}\left(\mathrm{sp}^{2}\right)_{5}{ }^{-}$ pentagons with six π electrons in fullerene derivatives (i.e., in $\mathrm{C}_{60} \mathrm{X}_{5}{ }^{-}$anionic moieties) are aromatic and can coordinate to exohedral metal atoms in $\eta^{5} \mathrm{Cp}$-like fashion. ${ }^{40}$ However, in 2 the isolated pentagons coordinate to an endohedral metal atom, Sc3.
Formally, each isolated pentagon has received one of the two electrons that Sc 3 donates to the C_{80} cage to become a sixelectron aromatic $\mathrm{C}\left(\mathrm{sp}^{2}\right)_{5}{ }^{-}$pentagon. The Sc 3 atom appears to be η^{2} bonded to both isolated pentagons simultaneously although not equally, and this inequality leads to the observed disorder in the position of Sc3 (see Table 2; Sc3a (43(2)\% occupancy and Sc3b (57(2)\% occupancy) are $0.455(3) \AA$ apart). In the structure of $\mathrm{Sc}\left(\eta^{5}-\mathrm{Cp}^{*}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)$, the ranges of $\mathrm{Sc}-\mathrm{C}(\mathrm{Cp})$

[^4]and $\mathrm{C}\left(\mathrm{Cp}^{*}\right)-\mathrm{C}\left(\mathrm{Cp}^{*}\right)$ distances are 2.482(4)-2.541(4) \AA and $1.403(5)-1.423(5) \AA$, respectively. ${ }^{41}$ In 2, the ranges of $\mathrm{Sc} 3 \mathrm{a} / \mathrm{b}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ distances involving the isolated pentagons are $2.20(5)-2.92(9) \AA$ and $1.401(2)-1.441(2) \AA$, respectively (the longest $\mathrm{C}-\mathrm{C}$ bond in each of the isolated $\mathrm{C}\left(\mathrm{sp}^{2}\right)_{5}{ }^{-}$pentagon is the one that is closest to $\mathrm{Sc} 3, \mathrm{C} 72-\mathrm{C} 73$ and $\mathrm{C} 76-\mathrm{C} 80$; note that the range of all $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ distancesin 2 is $1.344(2)-1.470(2)$ \AA A). Another indication of the aromatic, electron-rich nature of the isolated pentagons is that $\mathrm{C} 72-\mathrm{C} 73$ and $\mathrm{C} 76-\mathrm{C} 80$ are significantly shorter than C13-C31 (1.461(2) Å and C42-C43 (1.459(2) $\AA)$, which are η^{2} bonded to Sc 1 and Sc 2 , respectively, and are not part of isolated aromatic $\mathrm{C}\left(\mathrm{sp}^{2}\right)_{5}{ }^{-}$pentagons (see Figure S-5 in Supporting Information). Interestingly, the distances between Sc 3 a or Sc 3 b and the centroids of their respective isolated pentagons are ca. $2.28 \AA$, only $0.07 \AA$ longer than the corresponding distances in $\mathrm{Sc}\left(\eta^{5}-\mathrm{Cp}^{*}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)$ (ca. 2.21 A). ${ }^{41}$

In harmony with the X-ray structure of 2, our DFT calculations show that there are two conformational isomers of 2 that differ only in the position of Sc 3 (the calculated $\mathrm{Sc} 3 \mathrm{a} \cdots \mathrm{Cc} 3 \mathrm{~b}$ distance is $0.457 \AA$). The predicted energy difference between these conformers is $0.78 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and is reduced to 0.36 kJ mol^{-1} if zero-point vibrational energy (ZPVE) is taken into account. We also located the transition state between the conformers and found it to be only $1.36 \mathrm{~kJ} \mathrm{~mol}^{-1}$ above the lower energy structure $\left(0.69 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$ if ZPVE is also considered; to ensure that this transition state corresponds to the true energy barrier between the conformers, intrinsic-reaction-coordinate calculations were carried out following the

[^5]normal mode with an imaginary frequency in both directions). With such a low energy barrier to interconversion, the disorder found in the position of Sc3 is almost certainly a true equilibrium at 100 K , the temperature of the X-ray data collection. An equilibrium quotient of $1.3(1)$ can be calculated for the conformational equilibrium $\{\mathrm{Sc} 3 \mathrm{a}-$ conformer $\} \rightleftharpoons\{\mathrm{Sc} 3 \mathrm{~b}-$ conformer $\}$ (i.e., $57(2) \div 43(2)=1.3(1)$). At 100 K , this corresponds to an energy difference of $0.26(2) \mathrm{kJ} \mathrm{mol}^{-1}$, in excellent agreement with the DFT predicted value of 0.36 kJ mol^{-1}. This is the first time that an experimentally observed disorder in $\mathrm{M}_{3} \mathrm{~N}$ cluster conformations in an MNF has been shown by theory to be due to two or more energy minima, each with a full set of nonimaginary frequencies, and that the transition between the minima has a low barrier.
The orientations of the $\mathrm{Sc}_{3} \mathrm{~N}$ cluster in $\mathbf{1}, \mathbf{2}$, and DFToptimized $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}$ are quite similar. In all three cases C13 is the closest or second closest cage C atom to Sc 1 and C 76 and C80 are two of the closest cage C atoms to Sc3. It is Sc2 that appears to "move" the most in the three molecules, from the $\mathrm{C} 23-\mathrm{C} 24$ bond in $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}$ to the $\mathrm{C} 22-\mathrm{C} 43$ bond in $\mathbf{1}$ to the $\mathrm{C} 42-\mathrm{C} 43$ bond in 2 , and this causes the $\mathrm{Sc} 1-\mathrm{N}-\mathrm{Sc} 2$ angle to increase from 120° in $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}$ to $136.7(1)^{\circ}$ in $\mathbf{1}$ to $150.52(7)^{\circ}$ in 2. The distortion of the $\mathrm{Sc}_{3} \mathrm{~N}$ cluster in $\mathbf{2}$ from trigonal symmetry is larger than in any other observed MNF structure (one $\mathrm{Sc}-\mathrm{N}-\mathrm{Sc}$ angle was predicted to be 150° in nonIPR $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{70} ;{ }^{42}$ the previously largest $\mathrm{M}-\mathrm{N}-\mathrm{M}$ angle in an MNF found by X-ray crystallography is $131.6(1)^{\circ}$ in $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80^{-}}$ $\left.D_{5 h}(6)^{4}\right)$.

A recently published computational study of metal-cage bonding in EMFs reports that endohedral metal ions bond more strongly to sp^{2} pentagon-hexagon-hexagon junctions (PHHJs) than to sp^{2} THJs. ${ }^{43}$ Since each metal ion is generally bonded to two or more cage $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ atoms, and since the addition patterns of fullerene $\left(\mathrm{R}_{\mathrm{f}}\right)_{n}$ compounds tend to be ribbons of edge-sharing $p-\mathrm{C}_{6} \mathrm{X}_{2}$ and $m-\mathrm{C}_{6} \mathrm{X}_{2}$ hexagons when $n \leq 12$ (generally with one R_{f} group per pentagon), there may be a competition between the endohedral metal ions and the exohedral R_{f} groups for the limited number of "suitable" sp^{2} PHHJs. This may be an important part of the reason why, with 14 and 16 exohedral CF_{3} groups, $\mathbf{1}$ and $\mathbf{2}$ have such an abundance of sp^{3} THJs. In other words, if the Sc atoms must be closest to PHHJs, if the CF_{3} groups must lie on a ribbon, and if there are more than 12 CF_{3} groups, then at least some low-energy $\operatorname{MNF}\left(\mathrm{CF}_{3}\right)_{n}$ isomers will have ribbons with sp^{3} THJs.

On the basis of the experimental results in this paper and the aforementioned computational results, it now seems likely that multiple sp^{3} THJs in MNFs, and possibly in EMFs in general, will be a common phenomenon when they are highly functionalized. (This will not be welcome news to fullerene theorists, who can no longer rely on THJs being unlikely sites for exohedral additions when deciding which isomers to study computationally.) Will it also be found, in general, that the metal atoms in such MNFs will be "drawn" to pentagons that are one bond removed from the sp^{3} THJs (i.e., that $\mathrm{M}_{3} \mathrm{~N}$ cluster orientations and distortions will be determined by addition patterns, especially addition patterns that include sp^{3} THJs)? The answer may be Yes. There is another example of this phenomenon in the literature, with a different fullerene cage. As mentioned above, the compound $\mathrm{Sc}_{3} \mathrm{~N} @\left(\mathrm{C}_{78}-D_{3 h}(5)\right)$ -
(42) Yang, S.; Popov, A. A.; Dunsch, L. Angew. Chem., Int. Ed. 2007, 46, 1256-1259.
(43) Popov, A. A.; Dunsch, L. Chem.-Eur. J. 2009, 15, 9707-9729.

Figure 6. X-ray structure of $\mathrm{Sc}_{3} \mathrm{~N} @\left(\mathrm{C}_{78}-D_{3 h}(5)\right)\left(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NCPh}_{3}\right)$ was reported in ref 21 . These drawings show that Sc 1 , unlike Sc 2 , is displaced from a position equidistant from its two closest cage C atoms toward the pentagon bonded to the sp^{3} THJ. Since Sc 3 is essentially (but not crystallographically) symmetry-related to Sc 1 , it is also displaced toward the $\mathrm{sp}^{3} \mathrm{THJ}$ in a similar way. The dashed lines connecting the Sc atoms to the centroids of the pentagons to which they are bonded are intended as visual aids and have no special significance. Only the ipso C atoms of the three phenyl groups are shown.
$\left(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NCPh}_{3}\right)$ has two adjacent cage $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ atoms, one of which is a THJ. ${ }^{21}$ Drawings of two fragments of this molecule, shown in Figure 6, show that Sc1 is shifted toward the pentagon bonded to the sp^{3} THJ, whereas Sc 2 is almost exactly centered on its closest cage $\mathrm{C}-\mathrm{C}$ bond. Furthermore, Sc 3 is shifted toward a different pentagon that is also bonded to the $\mathrm{sp}^{3} \mathrm{THJ}$ (Sc1 and Sc3 are essentially, although not crystallographically, symmetry related). The net result is that the $\mathrm{Sc} 1-\mathrm{N}-\mathrm{Sc} 3$ angle in this compound, at $111.3(1)^{\circ},{ }^{21}$ is significantly smaller than the DFT-predicted angle of 120° in underivatized $\mathrm{Sc}_{3} \mathrm{~N} @\left(\mathrm{C}_{78^{-}}\right.$ $\left.D_{3 h}(5)\right) .{ }^{44}$ (The $\mathrm{Sc} 1-\mathrm{N}-\mathrm{Sc} 2$ and $\mathrm{Sc} 2-\mathrm{N}-\mathrm{Sc} 3$ angles in the cycloadduct are $123.5(1)$ and $125.5(1)$, respectively ${ }^{21}$). It is possible that there is also a steric reason for the small $\mathrm{Sc} 1-\mathrm{N}-\mathrm{Sc} 3$ angle in $\mathrm{Sc}_{3} \mathrm{~N} @\left(\mathrm{C}_{78}-D_{3 h}(5)\right)\left(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NCPh}_{3}\right)$: the formation of cage $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ atoms, in general, "enlarges" the fullerene cage in the vicinity of those atoms, and Sc 1 and Sc 3 might move toward one another because the cage is larger in the region between them. The compound $\mathrm{Sc}_{3} \mathrm{~N} @\left(\mathrm{C}_{78^{-}}\right.$ $\left.D_{3 h}(5)\right)\left(\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)_{2}$ is believed to have two sp ${ }^{3}$ THJs, one for each cycloadduct, and both of these were proposed to be connected to the pentagons bonded to Sc 1 and $\mathrm{Sc} 3 .{ }^{34}$ According to our DFT optimization of a model for this compound, with

[^6]CH_{2} substituents replacing the two $\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$ groups, the $\mathrm{Sc} 1-\mathrm{N}-\mathrm{Sc} 3$ angle should be 110.6°. In other words, we predict that Sc1 and Sc3 in this compound are also drawn toward the more electron-rich pentagons, which in this case are each bonded to two sp^{3} THJs.

Another interesting and presumably stabilizing feature of the structure of $\mathbf{2}$ is the presence of the isolated aromatic benzenoid ring comprising C 1 and $\mathrm{C} 5-\mathrm{C} 9$. The bond distances within this ring, $1.398(2)-1.405(2) \AA$, are the same at the $\pm 3 \sigma$ level of confidence. For fullerene derivatives with more than 70 cage C atoms, this structural feature has also been observed in $\mathrm{C}_{74} \mathrm{~F}_{38},{ }^{45}$ $\mathrm{C}_{78} \mathrm{Br}_{18},{ }^{46} \mathrm{C}_{78} \mathrm{Cl}_{18},{ }^{47}$ and $\mathrm{C}_{90} \mathrm{Cl}_{32}{ }^{48}$ Figure 2 shows that this region of 2 is flattened relative to the rest of the cage. The average POAV angle, a measure of the departure from planarity for $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ atoms (see Supporting Information), ${ }^{15,49}$ is 5.7° for C 1 and $\mathrm{C} 5-\mathrm{C} 9$, whereas it is 9.4° for the hexagon in 2 that includes C38 and C41 and 9.6° for the C1/C5-C9 hexagon in DFT-optimized $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}$ (for comparison, it is 11.6° for the $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ atoms in $\left.\mathrm{C}_{60}\right)$.

Finally, although it is obvious that the presence of the $\mathrm{Sc}_{3} \mathrm{~N}$ cluster has a strong influence on the pattern of CF_{3} radical additions to $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}$, we have also shown that the addition pattern of exohedral substituents can have a strong influence on the geometry of the $\mathrm{Sc}_{3} \mathrm{~N}$ cluster in $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80} \mathrm{X}_{n}$ derivatives. The combination of (i) using endohedral metal clusters to direct the addition of exohedral substituents and (ii) using substituent addition patterns (which can be modified by changing the substituent steric and/or electronic properties) to modify the geometry and hence the properties of endohedral metal clusters may allow the synthesis of technologically useful, highly derivatized, metal-cluster-containing EMFs in the near future.

Experimental Section

Synthesis and Purification of $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{14}$ and $\mathbf{S c}_{3} \mathbf{N} @ \mathbf{C}_{80}\left(\mathbf{C F}_{3}\right)_{16}$. All reagents and solvents were of the highest commercially available purity and were used as received. The compound $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}$ was prepared as previously described. ${ }^{9,10}$ In a typical synthesis, $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}(8.8 \mathrm{mg}, 0.0079 \mathrm{mmol})$ and silver trifluoroacetate (AgTFA; $108 \mathrm{mg}, 0.489 \mathrm{mmol}$) were ground together in a mortar and pestle. The mixture of solids was loaded into a 0.4 cm i.d. $\times 10.5 \mathrm{~cm}$ glass test tube, which was then sealed in a 0.6 cm i.d. $\times 11.5 \mathrm{~cm}$ copper tube with Swagelok fittings at both ends. The sealed reactor was heated at $350{ }^{\circ} \mathrm{C}$ for 2.5 h in a 8 cm i.d. $\times 45 \mathrm{~cm}$ long tube furnace. The product mixture was separated into the two title compounds by two-stage HPLC (10 mm i.d. $\times 250 \mathrm{~mm}$ Cosmosil Buckyprep column (Nacalai Tesque, Inc.); 300 nm UV detection). In the first stage, the eluent was 5 $\mathrm{mL} \mathrm{min}{ }^{-1}$ toluene. Both compounds were collected in a fraction that eluted between 2.9 and 8.0 min . In the second stage, the eluent was $5 \mathrm{~mL} \mathrm{~min}{ }^{-1}$ heptane. The compound $\mathrm{Sc}_{3} \mathrm{~N} @\left(\mathrm{C}_{80}\right)\left(\mathrm{CF}_{3}\right)_{16}$ eluted first, at $10.5 \mathrm{~min} ; \mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{14}$ eluted at 15.0 min . The compounds exhibited molecular anions in atmospheric-pressure photoionization (APPI) mass spectra at $2075.8 \mathrm{~m} / \mathrm{z}$ for $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{14}$ (calcd 2075.8) and at $2213.8 \mathrm{~m} / \mathrm{z}$ for $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{16}$ (calcd 2213.8), as shown in Figure S-1 in Supporting Information. An Agilent Technologies Model 6210 TOF

[^7]spectrometer was used for these experiments, and an acetonitrile solution that contained 1% toluene was used for flow injection.

X-ray Crystallography. For both structures, absorption and other corrections were applied using SADABS. The structures were solved using direct methods and refined (on F^{2}, using all data) by a full-matrix, weighted least-squares process. Standard Bruker control and integration software (APEX II) was employed, and Bruker SHELXTL software was used for structure solution, refinement, and graphics.

Crystals of $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{14} \cdot 0.5\left(\mathrm{C}_{8} \mathrm{H}_{10}\right)(\mathbf{1})$ were grown by slow evaporation of a saturated p-xylene solution. Relevant experimental parameters are listed in Table 1. A diffraction-quality single crystal ($0.014 \times 0.062 \times 0.074 \mathrm{~mm}$) was mounted in paratone oil on a glass fiber glued to a small copper pin. X-ray diffraction data were collected at ChemMatCARS Sector 15-B at the Advanced Photon Source at Argonne National Laboratory (CARS $=$ Center for Advanced Radiation Sources). The data set was collected at 100 K using a diamond (111) crystal monochromator, a wavelength of $0.4428 \AA$, and a Bruker CCD detector with 1 s counting per frame. Unit-cell parameters were refined by least-squares using 9908 reflections. There is one molecule of $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{14}$ in the asymmetric unit; neither the carbon cage nor the $\mathrm{Sc}_{3} \mathrm{~N}$ cluster is disordered. Four of the CF_{3} groups exhibit rotational disorder. The site-occupancy factors of the two modeled orientations for the trifluoromethyl groups that include C103, C104, C117, and C165 were $49 / 51 \%, 48 / 52 \%, 51 / 49 \%$, and $89 / 11 \%$, respectively. All of the F atoms in the major and minor disordered parts were refined anisotropically. A crystallographic information file is available in Supporting Information.
Crystals of $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{16}$ (2) were grown by slow evaporation from saturated heptanes/toluene solution. Relevant experimental parameters are listed in Table 1. A diffraction-quality single crystal ($0.040 \times 0.040 \times 0.060 \mathrm{~mm}^{3}$) was mounted in paratone oil on a MiTeGen $10 \mu \mathrm{~m}$ loop. The data set was collected at 100 K using a silicon (111) crystal monochromator on a D8 goniostat equipped with a Bruker APEXII CCD detector at Beamline 11.3.1 at the Advanced Light Source at Lawrence Berkeley National Laboratory using synchrotron radiation tuned to $\lambda=0.7749 \AA$. There is one molecule of $\mathrm{Sc}_{3} \mathrm{~N} @ \mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{16}$ in the asymmetric unit; neither the carbon cage nor the CF_{3} groups are disordered. One Sc atom in $\mathrm{Sc}_{3} \mathrm{~N}$ cluster is disordered among two positions, Sc 3 A and Sc 3 B , with site-occupancy factors $43(2) \%$ and $57(2) \%$, respectively. The major and minor disordered parts of Sc 3 atom were refined anisotropically. A crystallographic information file is available in Supporting Information.

DFT Calculations. All DFT calculations were performed using PBE functional ${ }^{50}$ and TZ2P-quality basis set with SBK-type effective core potential for Sc atoms implemented in the PRIRODA package. ${ }^{51,52}$ The quantum-chemical code employed expansion of the electron density in an auxiliary basis set to accelerate evaluation of the Coulomb and exchange-correlation terms. Although the DFToptimized structure of $\mathbf{1}$ could be directly compared to the X-rayderived coordinates, the disorder found in 2 required a more complicated analysis. Our calculations showed that there are two conformational isomers of $\mathbf{2}$, with different positions of Sc3. The other structural parameters of the conformers are very similar but are not identical. Hence, the X-ray-derived coordinates correspond to the average coordinates of the two conformers, and comparison of the experimental and DFT-optimized structural parameters should take this fact into account. In this regard, the DFT coordinates of 2 that we used to make the plot in Figure 4 are average DFToptimized coordinates of the two conformers taken with weights corresponding to the X-ray determined occupancies of Sc3a and Sc 3 b . The DFT coordinates of the conformers used for the averaging
(50) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.
(51) Laikov, D. N. Chem. Phys. Lett. 1997, 281, 151-156.
(52) Laikov, D. N.; Ustynyuk, Y. A. Russ. Chem. Bull., Int. Ed. 2004, 54, 820-826.
were obtained using intrinsic-reaction-coordinate calculations. That is, we first optimized the structure of the transition state. Then, the normal coordinate corresponding to the imaginary frequency was followed in two directions until the energy minima were reached on each side of the barrier, and the coordinates of these minima were used for the averaging. This procedure ensures that coordinates of the conformers are different only in the displacement along the reaction coordinate and are not affected by translation or rotation of the molecules. It should be noted that the use of the DFT coordinates for either one of the conformers to construct a plot similar to the one in Figure 4 gives the same excellent correlation for the cage $\mathrm{C}-\mathrm{C}$ bonds as use of the averaged coordinates. However, the DFT-predicted $\mathrm{Sc}-\mathrm{C}$ distances for the averaged coordinates are in much better agreement with the corresponding X-ray values than the DFT-predicted $\mathrm{Sc}-\mathrm{C}$ distances for either conformer alone.

Acknowledgment. We are pleased to acknowledge Lothar Dunsch for his encouragement and support and Simon Teat, Christine M. Beavers, Igor V. Kuvychko, and Ulrike Nitzsche for experimental and technical assistance. This work was supported by the Alexander von Humboldt Foundation (Fellowship to A.A.P.), the U.S. National Science Foundation (Grants CHE-0707223, CHE-

0547988, CHE-0847481, and DBI-0619455), the Civilian Research and Development Foundation (Grant RUC2-2830-MO-06), and the U.S. Department of Education (GAANN Fellowship Grant P200A060323). ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under Grant CHE-0535644. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract DE-AC0206CH11357. We gratefully acknowledge the beam time obtained at the 11.3.1 beamline at the Advanced Light Source at Lawrence Berkeley National Laboratory, which is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract DE-AC02-05CH11231.

Supporting Information Available: Crystallographic information files for $\mathbf{1}$ and $\mathbf{2}$, additional figures of the structures of $\mathbf{1}$ and $\mathbf{2}$, the HPLC purification of $\mathbf{1}$ and $\mathbf{2}$, and APPI mass spectra of $\mathbf{1}$ and 2. This material is available free of charge via the Internet at http://pubs.acs.org.

JA9069216

[^0]: ${ }^{*}$ Colorado State University.
 ${ }^{\text {§ }}$ University of Chicago Advanced Photon Source.
 ${ }^{\text {II }}$ University of Southern Mississippi.
 ${ }^{\dagger}$ Leibniz Institute for Solid State and Materials Research.
 (1) Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Cromer, F.; Jordan, M. R.; Craft, J.; Hadju, E.; Bible, R.; Olmstead, M. M.; Maitra, K.; Fisher, A. J.; Balch, A. L.; Dorn, H. C. Nature 1999, 401, 55-57.
 (2) Stevenson, S.; Lee, H. M.; Olmstead, M. M.; Kozikowski, C.; Stevenson, P.; Balch, A. L. Chem.-Eur. J. 2002, 8, 4528-4535.
 (3) Yamada, M.; Akasaka, T.; Nagase, S. Acc. Chem. Res. 2009, 42, ASAP publication, DOI: 10.1021/ar900140n.
 (4) Cai, T.; Xu, L.; Anderson, M. R.; Ge, Z.; Zuo, T.; Wang, X.; Olmstead, M. M.; Balch, A. L.; Gibson, H. W.; Dorn, H. C. J. Am. Chem. Soc. 2006, 128, 8581-8589.
 (5) Zuo, T.; Beavers, C. M.; Duchamp, J. C.; Campbell, A.; Dorn, H. C.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 2007, 129, 20352043.
 (6) Dunsch, L.; Yang, S. Small 2007, 3, 1298-1320.
 (7) Qian, M.; Ong, S. V.; Khanna, S. N.; Knickelbein, M. B. Phys. Rev. B 2007, 75, 104424-1-6.

[^1]: (28) Kareev, I. E.; Kuvychko, I. V.; Shustova, N. B.; Lebedkin, S. F.; Bubnov, V. P.; Anderson, O. P.; Popov, A. A.; Strauss, S. H.; Boltalina, O. V. Angew. Chem., Int. Ed. 2008, 47, 6204-6207.
 (29) Kareev, I. E.; Popov, A. A.; Kuvychko, I. V.; Shustova, N. B.; Lebedkin, S. F.; Bubnov, V. P.; Anderson, O. P.; Seppelt, K.; Strauss, S. H.; Boltalina, O. V. J. Am. Chem. Soc. 2008, 130, 13471-13489.
 (30) Kobayashi, K.; Sano, Y.; Nagase, S. J. Comput. Chem. 2001, 22, $1353-$ 1358.
 (31) Campanera, J. M.; Bo, C.; Olmstead, M. M.; Balch, A. L.; Poblet, J. M. J. Phys. Chem. A 2002, 106, 12356-12364.
 (32) Alvarez, L.; Pichler, T.; Georgi, P.; Schwieger, T.; Peisert, H.; Dunsch, L.; Hu, Z.; Knupfer, M.; Fink, J.; Bressler, P.; Mast, M.; Golden, M. S. Phys. Rev. B 2002, 66, 035107/1-035107/7.
 (33) Gan, L. H.; Yuan, R. ChemPhysChem 2006, 7, 1306-1310.
 (34) Popov, A. A.; Dunsch, L. J. Am. Chem. Soc. 2008, 130, 17726-17742.
 (35) Heine, T.; Vietze, K.; Siefert, G. Magn. Reson. Chem. 2004, 42, 199201.
 (36) Rodriguez-Fortea, A.; Campanera, J. M.; Cardona, C. M.; Echegoyen, L.; Poblet, J. M. Angew. Chem., Int. Ed. 2006, 45, 8176-8180.

[^2]: (37) Cai, T.; Xu, L.; Shu, C.; Champion, H.; Reid, J. E.; Anklin, C.; Anderson, M. R.; Gibson, H. W.; Dorn, H. C. J. Am. Chem. Soc. 2008, 130, 2136-2137.
 (38) Boltalina, O. V.; Popov, A. A.; Strauss, S. H. In Strained Hydrocarbons. Beyond the van't Hoff and Le Bel Hypothesis, Dodziuk, H., Ed.; Wiley-VCH: Weinheim, 2009; pp 225-238.
 (39) Hirsch, A.; Brettreich, M. Fullerenes-Chemistry and Reactions; Wiley-VCH: Weinheim, 2005.

[^3]: ${ }^{a}$ All three compounds considered have the $\mathrm{C}_{80}-I_{\mathrm{h}}(7)$ cage; compound $\mathbf{1}$ is $\mathrm{Sc}_{3} \mathrm{~N} @\left(1,3,7,17,28,39,41,45,47,51,54,62,65,70-\mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{14}\right)$ (IUPAC lowest locants); compound 2 is $\mathrm{Sc}_{3} \mathrm{~N} @(2,4,10$,- $16,20,23,25$, $\left.34,46,53,57,62,65,68,71,74-\mathrm{C}_{80}\left(\mathrm{CF}_{3}\right)_{16}\right)$ using a locant set that facilitates comparisons with $\mathbf{1}$ (the IUPAC lowest locants for $\mathbf{2}$ are actually $1,3,7,13,17,21,30,39,42,49,53,62,65,68,71,74) .{ }^{b}$ The first value is for Sc 3 a and the second value is for Sc 3 b .

[^4]: (40) Matsuo, Y.; Fujita, T.; Nakamura, E. Chem. Asian J. 2007, 2, 948955, and references therein.

[^5]: (41) Sadow, A. D.; Tilley, T. D. J. Am. Chem. Soc. 2003, 125, 79717977.

[^6]: (44) Popov, A. A.; Dunsch, L. J. Am. Chem. Soc. 2007, 129, 11835-11849.

[^7]: (45) Goryunkov, A. A.; Markov, V. Y.; Ioffe, I. N.; Sidorov, L. N.; Bolskar, R. D.; Diener, M. D.; Kuvychko, I. V.; Strauss, S. H.; Boltalina, O. V. Angew. Chem., Int. Ed. 2004, 43, 997-1000.
 (46) Troyanov, S. I.; Kemnitz, E. Eur. J. Org. Chem. 2003, 3916-3919.
 (47) Simeonov, K. S.; Amsharov, K. Y.; Jansen, M. Chem.-Eur. J. 2008, 14, 9585-9590.
 (48) Kemnitz, E.; Troyanov, S. I. Angew. Chem., Int. Ed. 2009, 48, 2584 2587.
 (49) Haddon, R. C. Science 1993, 261, 1545-1550.

